A (1 + 2)-Dimensional Simplified Keller-Segel Model: Lie Symmetry and Exact Solutions. II
نویسندگان
چکیده
Abstract: A simplified Keller–Segel model is studied by means of Lie symmetry based approaches. It is shown that a (1 + 2)-dimensional Keller–Segel type system, together with the correctly-specified boundary and/or initial conditions, is invariant with respect to infinite-dimensional Lie algebras. A Lie symmetry classification of the Cauchy problem depending on the initial profile form is presented. The Lie symmetries obtained are used for reduction of the Cauchy problem to that of (1 + 1)-dimensional. Exact solutions of some (1 + 1)-dimensional problems are constructed. In particular, we have proved that the Cauchy problem for the (1 + 1)-dimensional simplified Keller–Segel system can be linearized and solved in an explicit form. Moreover, additional biologically motivated restrictions were established in order to obtain a unique solution. The Lie symmetry classification of the (1 + 2)-dimensional Neumann problem for the simplified Keller–Segel system is derived. Because Lie symmetry of boundary-value problems depends essentially on geometry of the domain, which the problem is formulated for, all realistic (from applicability point of view) domains were examined. Reduction of the the Neumann problem on a strip is derived using the symmetries obtained. As a result, an exact solution of a nonlinear two-dimensional Neumann problem on a finite interval was found.
منابع مشابه
A (1+2)-Dimensional Simplified Keller-Segel Model: Lie Symmetry and Exact Solutions
This research is a natural continuation of the recent paper “Exact solutions of the simplified Keller–Segel model” (Commun Nonlinear Sci Numer Simulat 2013, 18, 2960–2971). It is shown that a (1+2)-dimensional Keller–Segel type system is invariant with respect infinite-dimensional Lie algebra. All possible maximal algebras of invariance of the Neumann boundary value problems based on the Keller...
متن کاملLie symmetry Analysis and Explicit Exact Dolutions of the Time Fractional Drinfeld-Sokolov-Wilson (DSW) System
In this study coupled system of nonlinear time fractional Drinfeld-Sokolov-Wilson equations, which describes the propagation of anomalous shallow water waves is investigated. The Lie symmetry analysis is performed on the model. Employing the suitable similarity transformations, the governing model is similarity reduced to a system of nonlinear ordinary differential equations with Erdelyi-Kober ...
متن کاملGlobal Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous Diffusion
The L-critical parabolic-elliptic Patlak-Keller-Segel system is a classical model of chemotactic aggregation in micro-organisms well-known to have critical mass phenomena [10, 8]. In this paper we study this critical mass phenomenon in the context of Patlak-Keller-Segel models with spatially varying diffusivity and decay rate of the chemo-attractant. The primary tool for the proof of global exi...
متن کاملNonnegativity of exact and numerical solutions of some chemotactic models
We investigate nonnegativity of exact and numerical solutions to a generalized Keller– Segel model. This model includes the so-called ‘‘minimal’’ Keller–Segel model, but can cover more general chemistry. We use maximum principles and invariant sets to prove that all components of the solution of the generalized model are nonnegative. We then derive numerical methods, using finite element techni...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 9 شماره
صفحات -
تاریخ انتشار 2017